Interpreting pump and CGM Data: Navigating the Maze
Eileen Egan, DNP, FNP-C, BC-ADM, CDE, FAADE
Disclosure to Participants

• Notice of Requirements For Successful Completion
 – Please refer to learning goals and objectives
 – Learners must attend the full activity and complete the evaluation in order to claim continuing education credit/hours

• Conflict of Interest (COI) and Financial Relationship Disclosures:
 – Presenter: Eileen Egan-nothing to disclose

• Non-Endorsement of Products:
 – Accredited status does not imply endorsement by AADE, ANCC, ACPE or CDR of any commercial products displayed in conjunction with the educational activity

• Off-Label Use:
 – Participants will be notified by speakers to any product used for a purpose other than for which it was approved by the Food and Drug Administration.

Learning Objectives

• List at least 3 advantages of utilizing insulin pump and continuous glucose monitoring (CGM) to mitigate glycemic variability
• Identify how to evaluate reports for dangerous glycemic excursions
• Through use of case study, identify impact of hemodialysis, peritoneal dialysis and gastroparesis on glycemic variability

Diabetes Management

• Technology has changed the way we administer medication, evaluate glycemic patterns and guide our patients towards being self-directed
 – Pumps: traditional, tubeless, automated
 – CGMs: real time, continuous, implantable
Data Overload

- Abundance of data; real-time and continuous
- Multitude of software systems and cloud based systems collecting and evaluating data
 - Allows for more informed decisions
 - Able to make more targeted adjustments
 - Strategize, problem solving
 - Patient empowerment
 - Increased touch points with patients
 - Remote monitoring
Minimize Post-prandial excursions

- Review carb counting
- Review nutrient components of the meal
- Review timing of meal bolus
- Review timing of correction bolus
- Adjust carb ratio and correction

Minimize Prolonged Hyperglycemia

- Identify causality
 - Missed bolus
 - Inaccurate carb counting
 - Bolusing after eating
 - Medications
 - Complication, coexisting conditions
 - Nutrient complexity of meal
 - Extending bolus/micro bolus

Maximize Time in Range

- Set personal glycemic targets
 - Pre and post meal
 - A1C
- Minimize glycemic variability
 - Reducing hypoglycemia and hyperglycemia
- Reduce risk for complications
 - Endothelial dysfunction
 - Inflammatory markers
The case of Mrs. K

- A1C >8%
- Extremely frustrated, doing everything right
 - Carb counting
 - Bolusing
 - exercising
- Type 1 diabetes for 20 years
- On a pump

CGM

CGM.......after
The case of Mr. D
- Hemodialysis 3 x week: Tuesday, Thursday, Saturday from 7p-10p
 - His A1C is 6.2% but his glucose is frequently > 200 mg/dl in your office
 - He takes Toujeo 10 units before bed and Humalog 6 units before meals
 - He eats dinner before going to dialysis
 - The dialysis nurse called reporting hypoglycemia during dialysis
 - He checks once or twice a day and isn’t interested in doing more because the numbers are always the same

Hemodialysis
- Hyperglycemia
 - May be related to secondary hyperparathyroidism and Vitamin D deficiency may impair insulin sensitivity
- Hypoglycemia
 - "Burn out diabetes"
 - Malnutrition, protein wasting, gastroparesis
 - Clearance of endogenous insulin is prolonged
 - Decrease nephron mass and kidney function lead to decreased renal gluconeogenesis
 - Accumulation of uremic toxins leading to insulin sensitivity

Average A1C of Dialysis Patients

Collaborative plan with the Diabetes Educator

- Consistent carb intake at meals
 - No carbs, no prandial bolus
 - Educate on use of correction bolus
- On non-dialysis days
 - Continue current Toujeo dose/ change to shorter acting basal
 - Increase Humalog before meals
- On dialysis days
 - Decrease/ change Toujeo
 - Decrease Humalog before dialysis

The case of Mr. A

- On continuous abdominal peritoneal dialysis (CAPD) for the past 3 months
 - A1C is 9%
 - He is on Tresiba before bed and Novolog before meals (~2 meals daily, feels full all the time)
 - He reports frequent night sweats and feeling restless overnight
 - Insulin doses have not been adjusted since starting dialysis
 - His bed time snack is ice cream, cookies or chips
Continuous abdominal Peritoneal Dialysis: what is it?

- A mixture of dextrose, salt, & minerals are dissolved in water = dialysis solution
- Solution is placed in abdominal cavity via a catheter
- Peritoneal membrane allows waste & extra fluid to pass from the blood into the dialysis solution
- The solution is then drained from the abdomen
- Each cycle of draining & filling is called an exchange
- The time the solution remains in the abdomen between exchanges is called the dwell time

Types of Peritoneal Dialysis

Continuous ambulatory peritoneal dialysis (CAPD)
- Patient performs exchanges manually
- Process uses gravity to fill & empty the abdomen
- Every 4-6 hours during the day
- Overnight dwell of 8-10 hours

Continuous cycler-assisted peritoneal dialysis (CCPD)
- A machine fills & empties the abdomen
- Cycles 3-5 times overnight
- The morning exchange dwells the entire day
- Sometimes an exchange is done during the day

Factors Affecting Fluid & Waste Removal

- Number of daily exchanges & dwell time
 - When fluid first enters the abdomen it draws waste rapidly, this slows over hours
 - More exchanges with shorter dwell times = more waste removed
- Concentration of dextrose in dialysate solution
 - 1.5%, 2.5%, 4.25% dextrose concentrations & Extraneal (7.5% icodextran)
 - Higher concentrations increase efficiency of exchanges
Collaborative Plan with the Diabetes Educator: Mr. A

- Minimize hypoglycemia
 - Reduce Tresiba dose and change to a shorter acting basal
- Reduce post-prandial hyperglycemia
 - Alternating dextrose solutions of 2.5% and 4.5% causing hyperglycemia and variability
 - +4 units with 2.5%, +6 units with 4.5%
- Encourage dietary modification
 - Meet with RD
 - Offer lower carb, lower calorie choices

CGM: Mr. A: miracles do happen
The case of Mrs. S and Mr. P

• Both are on continuous cycler-assisted peritoneal dialysis (CCPD)
 – Mrs. S is on a pump
 – Mr. P is on multiple daily injections
• Both are experiencing
 – Nocturnal hyperglycemia
 • Basal doses were increased
 – Daytime hypoglycemia
 • Too much basal

CGM: Mrs. S; CCPD

CGM: Mr. P; CCPD
Collaborative Plan with the Diabetes Educator

Mrs. S
- Increase basal rate from 12a-8a
- Reduce basal rate from 8a-8p
- Tighten carb ratio for dinner

Mr. P
- Change Tresiba to a shorter acting basal and reduce dose
- Add evening NPH
- Assist with alternative breakfast choices

CGM: Mr. P

The case of Ms. J
- 26 y/o, diagnosed with Type 1 diabetes at 11 months
- Reporting significant glycemic variability with a recent severe low after a meal
- A1c >8%, on multiple daily injections
- Otherwise feeling well
- After ruling out many potential causes, autonomic neuropathy suspected
 - Sent for a gastric emptying study, diagnosed with gastroparesis
Gastroparesis

- Slowed/ delayed gastric emptying
 - Direct effect on glycemic variability
 - Impacts quality of life
 - Impacts absorption of nutrients
- Not enough large clinical trials to indicate prevalence
 - Seems to be more common in T1 DM
- Evaluate patients with long duration of DM and/or with other neuropathies
- May be clinically silent: severity of symptoms does not always correlate w/ severity of gastroparesis
- Acute changes in glucose can alter gastric emptying and/or be symptoms of altered gastric emptying

CGM: variability related to meals

CGM: Night time eating
Collaborative plan with the diabetes educator

- Small, frequent meals
 - Avoidance of high carb, high fat, high fiber
- Insulin pump therapy
 - Extended bolus option
 - Micro bolusing (with pump or injections)
- Use of personal CGM
 - Use of directional arrows to aid in decision making

CGM: Ms. J……success

The case of Mr. H

- Type 1 DM for 10 years
- A1C 8.5%
- Ferry boat captain
 - Recent severe hypoglycemic event while driving the boat
 - Job requiring A1C <8%
Pump download: what is happening ?!?!

What’s the Goal?

- Never assume
 - Start with the basics
 - Forensic nursing
- Review data with the patient
 - Engage in cause and effect
 - Utilize shared decision making and motivational interviewing
- Foster self-directed behavior
 - Ultimately, a process of self-management
 - Provide continued support

References